5,361 research outputs found

    The UV variability of the Seyfert 1: Galaxies 3 Zw 2 and Markarian 509

    Get PDF
    The two galaxies differ markedly in their radio properties. III Zw 2 is a strong source with a highly variable compact component while MK 509 is a very weak source. Both galaxies show significant variations in X-rays and MK 509 has shown variations at optical wavelengths as well. Simultaneous observations were made in the ultraviolet, optical and infrared in order to examine three fundamental aspects of the origin of the continuum emission: are these thermal and nonthermal components; how large is the emitting region; and does the UV flux originate in the same region responsible for the optical, IR, radio and/or X-ray continuum emission

    Using x ray images to detect substructure in a sample of 40 Abell clusters

    Get PDF
    Using a method for constraining the dynamical state of a galaxy cluster by examining the moments of its x-ray surface brightness distribution, we determine the statistics of cluster substructure for a sample of 40 Abell clusters. Using x-ray observations from the Einstein Observatory Imaging Proportional Counter (IPC), we measure the first moment M1(r), the ellipsoidal orientation angle theta2(r), and the axial ratio eta(r) at several different radii in the cluster. We determine the effects of systematics such as x-ray point source emission, telescope vignetting, Poisson noise, and characteristics of the IPC by measuring the same parameters on an ensemble of simulated cluster images. Due to the small band-pass of the IPC, the ICM emissivity is nearly independent of temperature so the intensity at each point in the IPC images is simply proportional to the emission measure calculated along the line of sight through the cluster (e.g. Fabricant et al. 1980). Therefore, barring a change superposition of two x-ray emitting clusters, a significant variation in the image centroid M1(r) as a function of radius indicates that the center of mass of the intra-cluster medium (ICM) varies with radius. We argue that such a configuration (essentially an m = 1 component in the ICM density distribution) is a non-equilibrium component; it results from an off-center subclump or a recent merger in the ICM

    Optimization of a neutrino factory oscillation experiment

    Get PDF
    We discuss the optimization of a neutrino factory experiment for neutrino oscillation physics in terms of muon energy, baselines, and oscillation channels (gold, silver, platinum). In addition, we study the impact and requirements for detector technology improvements, and we compare the results to beta beams. We find that the optimized neutrino factory has two baselines, one at about 3000 to 5000km, the other at about 7500km (``magic'' baseline). The threshold and energy resolution of the golden channel detector have the most promising optimization potential. This, in turn, could be used to lower the muon energy from about 50GeV to about 20GeV. Furthermore, the inclusion of electron neutrino appearance with charge identification (platinum channel) could help for large values of \sin^2 2 \theta_{13}. Though tau neutrino appearance with charge identification (silver channel) helps, in principle, to resolve degeneracies for intermediate \sin^2 2 \theta_{13}, we find that alternative strategies may be more feasible in this parameter range. As far as matter density uncertainties are concerned, we demonstrate that their impact can be reduced by the combination of different baselines and channels. Finally, in comparison to beta beams and other alternative technologies, we clearly can establish a superior performance for a neutrino factory in the case \sin^2 2 \theta_{13} < 0.01.Comment: 51 pages, 25 figures, 6 tables, references corrected, final version to appear in Phys. Rev.

    XMM-Newton and Gemini Observations of Eight RASSCALS Galaxy Groups

    Full text link
    We study the distribution of gas pressure and entropy in eight groups of galaxies belonging to the ROSAT All-Sky Survey / Center for Astrophysics Loose Systems (RASSCALS). We use archival and proprietary XMM-Newton observations, supplementing the X-ray data with redshifts derived from the literature; we also list 127 new redshifts measured with the Gemini North telescope. The groups show remarkable self-similarity in their azimuthally averaged entropy and temperature profiles. The entropy increases with radius; the behavior of the entropy profiles is consistent with an increasing broken power law with inner and outer slope 0.92+0.04-0.05 and 0.42+0.05-0.04 (68% confidence), respectively. There is no evidence of a central, isentropic core, and the entropy distribution in most of the groups is flatter at large radii than in the inner region, challenging earlier reports as well as theoretical models predicting large isentropic cores or asymptotic slopes of 1.1 at large radii. The pressure profiles are consistent with a self-similar decreasing broken power law in radius; the inner and outer slopes are -0.78+0.04-0.03 and -1.7+0.1-0.3, respectively. The results suggest that the larger scatter in the entropy distribution reflects the varied gasdynamical histories of the groups; the regularity and self-similarity of the pressure profiles is a sign of a similarity in the underlying dark matter distributions.Comment: Accepted for publication in the Astrophysical Journa

    Clustering of Galaxies in a Hierarchical Universe: I. Methods and Results at z=0

    Full text link
    We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter halos as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for cooling, star formation, supernova feedback and the merging of galaxies within the halos. This scheme enables us to study the clustering properties of galaxies and to investigate how selection by type, colour or luminosity influences the results. In this paper, we study properties of the galaxy distribution at z=0. These include luminosity functions, colours, correlation functions, pairwise peculiar velocities, cluster M/L ratios and star formation rates. We focus on two variants of a CDM cosmology: a high- density model with Gamma=0.21 (TCDM) and a low-density model with Omega=0.3 and Lambda=0.7 (LCDM). Both are normalized to reproduce the I-band Tully-Fisher relation near a circular velocity of 220 km/s. Our results depend strongly both on this normalization and on the prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For TCDM, efficient feedback is required to suppress the growth of galaxies low-mass field halos. Without it, there are too many galaxies and the correlation function turns over below 1 Mpc. For LCDM, feedback must be weak, otherwise too few L* galaxies are produced and the correlation function is too steep. Given the uncertainties in modelling some of the key physical processes, we conclude that it is not yet possible to draw conclusions about the values of cosmological parameters from studies of this kind. Further work on global star formation and feedback effects is required to narrow the range of possibilitiesComment: 43 pages, Latex, 16 figures included, 2 additional GIF format figures, submitted to MNRA

    Mass Profile of the Infall Region of the Abell 2199 Supercluster

    Full text link
    Using a redshift survey of 1323 galaxies (1092 new or remeasured) in a region of 95 square degrees centered on the nearby galaxy cluster Abell 2199, we analyze the supercluster containing A2199, A2197, and an X-ray group. The caustic technique accurately reproduces the true mass profiles of simulated simple superclusters (i.e., superclusters where the virial mass of one cluster is 2-10 times the virial mass of all other clusters in the supercluster). We calculate the masses of the two main components of A2197 (A2197W and A2197E) using archival X-ray observations and demonstrate that the A2199 supercluster is simple and thus that the caustic technique should yield an accurate mass profile. The mass profile is uncertain by ~30% within 3 Mpc/h and by a factor of two within 8 Mpc/h and is one of only a few for a supercluster on such large scales. Independent X-ray mass estimates agree with our results at all radii where they overlap. The mass profile strongly disagrees with an isothermal sphere profile but agrees with profiles suggested by simulations. We discuss the interplay of the supercluster dynamics and the dynamics of the bound subclusters. The agreement between the infall mass profile and other techniques shows that the caustic technique is surprisingly robust for simple superclusters (abridged).Comment: 49 pages, 20 figures, to appear in The Astronomical Journal, version containing high-resolution figures available at http://cfa-www.harvard.edu/~krines/a2199mp.p

    Environments of Redshift Survey Compact Groups of Galaxies

    Get PDF
    Redshift Survey Compact Groups (RSCGs) are tight knots of N >= 3 galaxies selected from the CfA2+SSRS2 redshift survey. The selection is based on physical extent and association in redshift space alone. We measured 300 new redshifts of fainter galaxies within 1 h^{-1} Mpc of 14 RSCGs to explore the relationship between RSCGs and their environments. 13 of 14 RSCGs are embedded in overdense regions of redshift space. The systems range from a loose group of 5 members to an Abell cluster. The remaining group, RSCG 64, appears isolated. RSCGs are isolated and distinct from their surroundings to varying degrees, as are the Hickson Compact Groups. Among the 13 embedded RSCGs, 3 are distinct from their general environments (RSCG 9, RSCG 11 and RSCG 85).Comment: 35 pages, including 10 figures and 5 tables, accepted for publication in the Astronomical Journa
    • …
    corecore